23.5.3 problem 3(b)

Internal problem ID [4180]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 7. Special functions. Exercises at page 124
Problem number : 3(b)
Date solved : Monday, January 27, 2025 at 08:41:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }-\frac {y}{x}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.017 (sec). Leaf size: 44

Order:=6; 
dsolve(diff(y(x),x$2)+(1-1/x)*diff(y(x),x)-1/x*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} x^{2} \left (1-\frac {1}{3} x +\frac {1}{12} x^{2}-\frac {1}{60} x^{3}+\frac {1}{360} x^{4}-\frac {1}{2520} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (-2+2 x -x^{2}+\frac {1}{3} x^{3}-\frac {1}{12} x^{4}+\frac {1}{60} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 69

AsymptoticDSolveValue[D[y[x],{x,2}]+(1-1/x)*D[y[x],x]-1/x*y[x]==0,{y[x]},{x,0,"6"-1}]
 
\[ \{y(x)\}\to c_1 \left (\frac {x^4}{24}-\frac {x^3}{6}+\frac {x^2}{2}-x+1\right )+c_2 \left (\frac {x^6}{360}-\frac {x^5}{60}+\frac {x^4}{12}-\frac {x^3}{3}+x^2\right ) \]