23.5.7 problem 3(f)

Internal problem ID [4184]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 7. Special functions. Exercises at page 124
Problem number : 3(f)
Date solved : Monday, January 27, 2025 at 08:41:28 AM
CAS classification : [_Jacobi, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} y^{\prime \prime }-\frac {3 y^{\prime }}{x \left (1-x \right )}+\frac {2 y}{x \left (1-x \right )}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.017 (sec). Leaf size: 42

Order:=6; 
dsolve(diff(y(x),x$2)-3/(x*(1-x))*diff(y(x),x)+2/(x*(1-x))*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} x^{4} \left (1+2 x +3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (-144-96 x -48 x^{2}+48 x^{4}+96 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 56

AsymptoticDSolveValue[D[y[x],{x,2}]-3/(x*(1-x))*D[y[x],x]+2/(x*(1-x))*y[x]==0,{y[x]},{x,0,"6"-1}]
 
\[ \{y(x)\}\to c_1 \left (-\frac {x^4}{3}+\frac {x^2}{3}+\frac {2 x}{3}+1\right )+c_2 \left (5 x^8+4 x^7+3 x^6+2 x^5+x^4\right ) \]