20.13.2 problem 2

Internal problem ID [3811]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 9, First order linear systems. Section 9.1, page 587
Problem number : 2
Date solved : Tuesday, March 04, 2025 at 05:17:22 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=2 x_{1} \left (t \right )-3 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-2 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 30
ode:=[diff(x__1(t),t) = 2*x__1(t)-3*x__2(t), diff(x__2(t),t) = x__1(t)-2*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{-t} c_{1} +c_{2} {\mathrm e}^{t} \\ x_{2} \left (t \right ) &= {\mathrm e}^{-t} c_{1} +\frac {c_{2} {\mathrm e}^{t}}{3} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 72
ode={D[x1[t],t]==2*x1[t]-3*x2[t],D[x2[t],t]==x1[t]-2*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{2} e^{-t} \left (c_1 \left (3 e^{2 t}-1\right )-3 c_2 \left (e^{2 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{2} e^{-t} \left (c_1 \left (e^{2 t}-1\right )-c_2 \left (e^{2 t}-3\right )\right ) \\ \end{align*}
Sympy. Time used: 0.079 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-2*x__1(t) + 3*x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 2*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = C_{1} e^{- t} + 3 C_{2} e^{t}, \ x^{2}{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{t}\right ] \]