Internal
problem
ID
[3818]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.1,
page
587
Problem
number
:
9
Date
solved
:
Tuesday, March 04, 2025 at 05:17:30 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 2*x__2(t), diff(x__2(t),t) = x__1(t)+x__2(t)]; ic:=x__1(0) = 3x__2(0) = 0; dsolve([ode,ic]);
ode={D[x1[t],t]==2*x2[t],D[x2[t],t]==x1[t]+x2[t]}; ic={x1[0]==3,x2[0]==0}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-2*x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) - x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)