Internal
problem
ID
[3824]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.1,
page
587
Problem
number
:
21
Date
solved
:
Friday, March 14, 2025 at 01:27:28 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -tan(t)*x__1(t)+3*cos(t)^2, diff(x__2(t),t) = x__1(t)+tan(t)*x__2(t)+2*sin(t)]; ic:=x__1(0) = 4x__2(0) = 0; dsolve([ode,ic]);
ode={D[x1[t],t]==-Tan[t]*x1[t]+3*Cos[t]^2,D[x2[t],t]==x1[t]+Tan[t]*x2[t]+2*Sin[t]}; ic={x1[0]==4,x2[0]==0}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(x__1(t)*tan(t) - 3*cos(t)**2 + Derivative(x__1(t), t),0),Eq(-x__1(t) - x__2(t)*tan(t) - 2*sin(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)