20.16.5 problem 5

Internal problem ID [3838]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 9, First order linear systems. Section 9.4 (Nondefective coefficient matrix), page 607
Problem number : 5
Date solved : Tuesday, March 04, 2025 at 05:17:49 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-x_{1} \left (t \right )+2 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-2 x_{1} \left (t \right )-x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 44
ode:=[diff(x__1(t),t) = -x__1(t)+2*x__2(t), diff(x__2(t),t) = -2*x__1(t)-x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{-t} \left (c_{1} \sin \left (2 t \right )+c_{2} \cos \left (2 t \right )\right ) \\ x_{2} \left (t \right ) &= {\mathrm e}^{-t} \left (c_{1} \cos \left (2 t \right )-c_{2} \sin \left (2 t \right )\right ) \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 51
ode={D[x1[t],t]==-x1[t]+2*x2[t],D[x2[t],t]==-2*x1[t]-x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to e^{-t} (c_1 \cos (2 t)+c_2 \sin (2 t)) \\ \text {x2}(t)\to e^{-t} (c_2 \cos (2 t)-c_1 \sin (2 t)) \\ \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 44
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(x__1(t) - 2*x__2(t) + Derivative(x__1(t), t),0),Eq(2*x__1(t) + x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = C_{1} e^{- t} \sin {\left (2 t \right )} + C_{2} e^{- t} \cos {\left (2 t \right )}, \ x^{2}{\left (t \right )} = C_{1} e^{- t} \cos {\left (2 t \right )} - C_{2} e^{- t} \sin {\left (2 t \right )}\right ] \]