Internal
problem
ID
[3852]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.4
(Nondefective
coefficient
matrix),
page
607
Problem
number
:
19
Date
solved
:
Tuesday, March 04, 2025 at 05:18:04 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 2*x__1(t)-x__2(t)+3*x__3(t), diff(x__2(t),t) = 3*x__1(t)+x__2(t), diff(x__3(t),t) = 2*x__1(t)-x__2(t)+3*x__3(t)]; ic:=x__1(0) = -4x__2(0) = 4x__3(0) = 4; dsolve([ode,ic]);
ode={D[x1[t],t]==2*x1[t]-x2[t]+3*x3[t],D[x2[t],t]==3*x1[t]+x2[t],D[x3[t],t]==2*x1[t]-x2[t]+3*x3[t]}; ic={x1[0]==-4,x2[0]==4,x3[0]==4}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-2*x__1(t) + x__2(t) - 3*x__3(t) + Derivative(x__1(t), t),0),Eq(-3*x__1(t) - x__2(t) + Derivative(x__2(t), t),0),Eq(-2*x__1(t) + x__2(t) - 3*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)