26.2.1 problem 1

Internal problem ID [4250]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, section 8, page 41
Problem number : 1
Date solved : Monday, January 27, 2025 at 08:44:34 AM
CAS classification : [[_homogeneous, `class G`], _exact, _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve((x+2/y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {2 \operatorname {LambertW}\left (\frac {x \,{\mathrm e}^{\frac {c_{1}}{2}}}{2}\right )}{x} \]

Solution by Mathematica

Time used: 6.963 (sec). Leaf size: 58

DSolve[(x+2/y[x])*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {2 W\left (-\frac {1}{2} \sqrt {e^{c_1} x^2}\right )}{x} \\ y(x)\to \frac {2 W\left (\frac {1}{2} \sqrt {e^{c_1} x^2}\right )}{x} \\ y(x)\to 0 \\ \end{align*}