Internal
problem
ID
[4252]
Book
:
Differential
equations
with
applications
and
historial
notes,
George
F.
Simmons.
Second
edition.
1971
Section
:
Chapter
2,
section
8,
page
41
Problem
number
:
3
Date
solved
:
Monday, January 27, 2025 at 08:45:16 AM
CAS
classification
:
[_exact, _rational]
Time used: 0.003 (sec). Leaf size: 20
\[
-\frac {x^{4}}{4}+x y \left (x \right )+\frac {y \left (x \right )^{4}}{4}+c_{1} = 0
\]
Time used: 60.179 (sec). Leaf size: 1210
\begin{align*}
y(x)\to -\frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}+\sqrt {\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}-\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}-\sqrt {-\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}+\sqrt {-\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
\end{align*}