Internal
problem
ID
[3874]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.6
(Variation
of
parameters
for
linear
systems),
page
624
Problem
number
:
4
Date
solved
:
Tuesday, March 04, 2025 at 05:18:27 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -x__1(t)+x__2(t)+20*exp(3*t), diff(x__2(t),t) = 3*x__1(t)+x__2(t)+12*exp(t)]; dsolve(ode);
ode={D[x1[t],t]==x1[t]+x2[t]+20*Exp[3*t],D[x2[t],t]==3*x1[t]+x2[t]+12*Exp[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(x__1(t) - x__2(t) - 20*exp(3*t) + Derivative(x__1(t), t),0),Eq(-3*x__1(t) - x__2(t) - 12*exp(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)