26.5.1 problem 2

Internal problem ID [4275]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, End of chapter, page 61
Problem number : 2
Date solved : Monday, January 27, 2025 at 08:47:23 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (1-y x \right ) y^{\prime }&=y^{2} \end{align*}

Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve((1-x*y(x))*diff(y(x),x)=y(x)^2,y(x), singsol=all)
 
\[ y \left (x \right ) = -\frac {\operatorname {LambertW}\left (-x \,{\mathrm e}^{-c_{1}}\right )}{x} \]

Solution by Mathematica

Time used: 1.911 (sec). Leaf size: 25

DSolve[(1-x*y[x])*D[y[x],x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {W\left (-e^{-c_1} x\right )}{x} \\ y(x)\to 0 \\ \end{align*}