Internal
problem
ID
[4278]
Book
:
Differential
equations
with
applications
and
historial
notes,
George
F.
Simmons.
Second
edition.
1971
Section
:
Chapter
2,
End
of
chapter,
page
61
Problem
number
:
5
Date
solved
:
Monday, January 27, 2025 at 08:47:37 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
Time used: 0.667 (sec). Leaf size: 207
\begin{align*}
y \left (x \right ) &= \frac {c_{1} \left (\left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{2}/{3}}+c_{1} \right )}{x \left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {c_{1} \left (i \sqrt {3}\, \left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{2}/{3}}-i c_{1} \sqrt {3}+\left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{2}/{3}}+c_{1} \right )}{2 x \left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {c_{1} \left (-i \sqrt {3}\, \left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{2}/{3}}+i c_{1} \sqrt {3}+\left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{2}/{3}}+c_{1} \right )}{2 x \left (-x^{3}+\sqrt {x^{6}-c_{1}^{3}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 60.133 (sec). Leaf size: 820
\begin{align*}
y(x)\to x^2-\frac {9 x^2}{\frac {9 \sqrt [3]{x^{12} \left (-\cosh \left (\frac {3 c_1}{4}\right )\right )-x^{12} \sinh \left (\frac {3 c_1}{4}\right )+2 x^6 \cosh \left (\frac {3 c_1}{8}\right )+2 x^6 \sinh \left (\frac {3 c_1}{8}\right )+\sqrt {x^6 \left (\cosh \left (\frac {15 c_1}{16}\right )+\sinh \left (\frac {15 c_1}{16}\right )\right ) \left (\left (x^6-1\right ) \cosh \left (\frac {3 c_1}{16}\right )+\left (x^6+1\right ) \sinh \left (\frac {3 c_1}{16}\right )\right ){}^3}-1}}{x^6 \cosh \left (\frac {3 c_1}{8}\right )+x^6 \sinh \left (\frac {3 c_1}{8}\right )-1}-\frac {9}{\sqrt [3]{x^{12} \left (-\cosh \left (\frac {3 c_1}{4}\right )\right )-x^{12} \sinh \left (\frac {3 c_1}{4}\right )+2 x^6 \cosh \left (\frac {3 c_1}{8}\right )+2 x^6 \sinh \left (\frac {3 c_1}{8}\right )+\sqrt {x^6 \left (\cosh \left (\frac {15 c_1}{16}\right )+\sinh \left (\frac {15 c_1}{16}\right )\right ) \left (\left (x^6-1\right ) \cosh \left (\frac {3 c_1}{16}\right )+\left (x^6+1\right ) \sinh \left (\frac {3 c_1}{16}\right )\right ){}^3}-1}}+9} \\
y(x)\to x^2-\frac {18 x^2}{\frac {9 i \left (\sqrt {3}+i\right ) \sqrt [3]{x^{12} \left (-\cosh \left (\frac {3 c_1}{4}\right )\right )-x^{12} \sinh \left (\frac {3 c_1}{4}\right )+2 x^6 \cosh \left (\frac {3 c_1}{8}\right )+2 x^6 \sinh \left (\frac {3 c_1}{8}\right )+\sqrt {x^6 \left (\cosh \left (\frac {15 c_1}{16}\right )+\sinh \left (\frac {15 c_1}{16}\right )\right ) \left (\left (x^6-1\right ) \cosh \left (\frac {3 c_1}{16}\right )+\left (x^6+1\right ) \sinh \left (\frac {3 c_1}{16}\right )\right ){}^3}-1}}{x^6 \cosh \left (\frac {3 c_1}{8}\right )+x^6 \sinh \left (\frac {3 c_1}{8}\right )-1}+\frac {9+9 i \sqrt {3}}{\sqrt [3]{x^{12} \left (-\cosh \left (\frac {3 c_1}{4}\right )\right )-x^{12} \sinh \left (\frac {3 c_1}{4}\right )+2 x^6 \cosh \left (\frac {3 c_1}{8}\right )+2 x^6 \sinh \left (\frac {3 c_1}{8}\right )+\sqrt {x^6 \left (\cosh \left (\frac {15 c_1}{16}\right )+\sinh \left (\frac {15 c_1}{16}\right )\right ) \left (\left (x^6-1\right ) \cosh \left (\frac {3 c_1}{16}\right )+\left (x^6+1\right ) \sinh \left (\frac {3 c_1}{16}\right )\right ){}^3}-1}}+18} \\
y(x)\to x^2-\frac {18 x^2}{-\frac {9 i \left (\sqrt {3}-i\right ) \sqrt [3]{x^{12} \left (-\cosh \left (\frac {3 c_1}{4}\right )\right )-x^{12} \sinh \left (\frac {3 c_1}{4}\right )+2 x^6 \cosh \left (\frac {3 c_1}{8}\right )+2 x^6 \sinh \left (\frac {3 c_1}{8}\right )+\sqrt {x^6 \left (\cosh \left (\frac {15 c_1}{16}\right )+\sinh \left (\frac {15 c_1}{16}\right )\right ) \left (\left (x^6-1\right ) \cosh \left (\frac {3 c_1}{16}\right )+\left (x^6+1\right ) \sinh \left (\frac {3 c_1}{16}\right )\right ){}^3}-1}}{x^6 \cosh \left (\frac {3 c_1}{8}\right )+x^6 \sinh \left (\frac {3 c_1}{8}\right )-1}+\frac {9-9 i \sqrt {3}}{\sqrt [3]{x^{12} \left (-\cosh \left (\frac {3 c_1}{4}\right )\right )-x^{12} \sinh \left (\frac {3 c_1}{4}\right )+2 x^6 \cosh \left (\frac {3 c_1}{8}\right )+2 x^6 \sinh \left (\frac {3 c_1}{8}\right )+\sqrt {x^6 \left (\cosh \left (\frac {15 c_1}{16}\right )+\sinh \left (\frac {15 c_1}{16}\right )\right ) \left (\left (x^6-1\right ) \cosh \left (\frac {3 c_1}{16}\right )+\left (x^6+1\right ) \sinh \left (\frac {3 c_1}{16}\right )\right ){}^3}-1}}+18} \\
\end{align*}