26.5.12 problem 15

Internal problem ID [4286]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, End of chapter, page 61
Problem number : 15
Date solved : Monday, January 27, 2025 at 08:48:30 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _exact]

\begin{align*} \cos \left (x +y\right )-x \sin \left (x +y\right )&=x \sin \left (x +y\right ) y^{\prime } \end{align*}

Solution by Maple

Time used: 0.009 (sec). Leaf size: 14

dsolve(cos(x+y(x))-x*sin(x+y(x))=x*sin(x+y(x))*diff(y(x),x),y(x), singsol=all)
 
\[ y \left (x \right ) = -x +\arccos \left (\frac {c_{1}}{x}\right ) \]

Solution by Mathematica

Time used: 7.989 (sec). Leaf size: 35

DSolve[Cos[x+y[x]]-x*Sin[x+y[x]]==x*Sin[x+y[x]]*D[y[x],x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -x-\arccos \left (-\frac {c_1}{x}\right ) \\ y(x)\to -x+\arccos \left (-\frac {c_1}{x}\right ) \\ \end{align*}