26.5.14 problem 18

Internal problem ID [4288]
Book : Differential equations with applications and historial notes, George F. Simmons. Second edition. 1971
Section : Chapter 2, End of chapter, page 61
Problem number : 18
Date solved : Monday, January 27, 2025 at 08:49:12 AM
CAS classification : [[_homogeneous, `class C`], _exact, _dAlembert]

\begin{align*} y^{\prime } \ln \left (x -y\right )&=1+\ln \left (x -y\right ) \end{align*}

Solution by Maple

Time used: 0.023 (sec). Leaf size: 32

dsolve(diff(y(x),x)*ln(x-y(x))=1+ln(x-y(x)),y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {x \operatorname {LambertW}\left (\left (-x +c_{1} \right ) {\mathrm e}^{-1}\right )-c_{1} +x}{\operatorname {LambertW}\left (\left (-x +c_{1} \right ) {\mathrm e}^{-1}\right )} \]

Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 26

DSolve[D[y[x],x]*Log[x-y[x]]==1+Log[x-y[x]],y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}[(x-y(x)) (-\log (x-y(x)))-y(x)=c_1,y(x)] \]