20.20.24 problem 24
Internal
problem
ID
[3914]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.11
(Chapter
review),
page
665
Problem
number
:
24
Date
solved
:
Tuesday, March 04, 2025 at 05:19:20 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=7 x_{1} \left (t \right )-x_{4} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=6 x_{2} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=-x_{3} \left (t \right )\\ \frac {d}{d t}x_{4} \left (t \right )&=2 x_{1} \left (t \right )+5 x_{4} \left (t \right ) \end{align*}
✓ Maple. Time used: 0.046 (sec). Leaf size: 62
ode:=[diff(x__1(t),t) = 7*x__1(t)-x__4(t), diff(x__2(t),t) = 6*x__2(t), diff(x__3(t),t) = -x__3(t), diff(x__4(t),t) = 2*x__1(t)+5*x__4(t)];
dsolve(ode);
\begin{align*}
x_{1} \left (t \right ) &= {\mathrm e}^{6 t} \left (c_{1} \sin \left (t \right )+c_{2} \cos \left (t \right )\right ) \\
x_{2} \left (t \right ) &= c_4 \,{\mathrm e}^{6 t} \\
x_{3} \left (t \right ) &= c_3 \,{\mathrm e}^{-t} \\
x_{4} \left (t \right ) &= {\mathrm e}^{6 t} \left (c_{1} \sin \left (t \right )+\sin \left (t \right ) c_{2} -\cos \left (t \right ) c_{1} +c_{2} \cos \left (t \right )\right ) \\
\end{align*}
✓ Mathematica. Time used: 0.044 (sec). Leaf size: 267
ode={D[x1[t],t]==7*x1[t]+0*x2[t]-0*x3[t]-1*x4[t],D[x2[t],t]==0*x1[t]+6*x2[t]-0*x3[t]+0*x4[t],D[x3[t],t]==0*x1[t]+0*x2[t]-1*x3[t]+0*x4[t],D[x4[t],t]==2*x1[t]+0*x2[t]+0*x3[t]+5*x4[t]};
ic={};
DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {x1}(t)\to e^{6 t} (c_1 (\sin (t)+\cos (t))-c_2 \sin (t)) \\
\text {x4}(t)\to e^{6 t} (c_2 \cos (t)+(2 c_1-c_2) \sin (t)) \\
\text {x2}(t)\to c_3 e^{6 t} \\
\text {x3}(t)\to c_4 e^{-t} \\
\text {x1}(t)\to e^{6 t} (c_1 (\sin (t)+\cos (t))-c_2 \sin (t)) \\
\text {x4}(t)\to e^{6 t} (c_2 \cos (t)+(2 c_1-c_2) \sin (t)) \\
\text {x2}(t)\to c_3 e^{6 t} \\
\text {x3}(t)\to 0 \\
\text {x1}(t)\to e^{6 t} (c_1 (\sin (t)+\cos (t))-c_2 \sin (t)) \\
\text {x4}(t)\to e^{6 t} (c_2 \cos (t)+(2 c_1-c_2) \sin (t)) \\
\text {x2}(t)\to 0 \\
\text {x3}(t)\to c_4 e^{-t} \\
\text {x1}(t)\to e^{6 t} (c_1 (\sin (t)+\cos (t))-c_2 \sin (t)) \\
\text {x4}(t)\to e^{6 t} (c_2 \cos (t)+(2 c_1-c_2) \sin (t)) \\
\text {x2}(t)\to 0 \\
\text {x3}(t)\to 0 \\
\end{align*}
✓ Sympy. Time used: 0.137 (sec). Leaf size: 70
from sympy import *
t = symbols("t")
x__1 = Function("x__1")
x__2 = Function("x__2")
x__3 = Function("x__3")
x__4 = Function("x__4")
ode=[Eq(-7*x__1(t) + x__4(t) + Derivative(x__1(t), t),0),Eq(-6*x__2(t) + Derivative(x__2(t), t),0),Eq(x__3(t) + Derivative(x__3(t), t),0),Eq(-2*x__1(t) - 5*x__4(t) + Derivative(x__4(t), t),0)]
ics = {}
dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)
\[
\left [ x^{1}{\left (t \right )} = \left (\frac {C_{1}}{2} - \frac {C_{2}}{2}\right ) e^{6 t} \cos {\left (t \right )} - \left (\frac {C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{6 t} \sin {\left (t \right )}, \ x^{2}{\left (t \right )} = C_{3} e^{6 t}, \ x^{3}{\left (t \right )} = C_{4} e^{- t}, \ x^{4}{\left (t \right )} = C_{1} e^{6 t} \cos {\left (t \right )} - C_{2} e^{6 t} \sin {\left (t \right )}\right ]
\]