Internal
problem
ID
[3916]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.11
(Chapter
review),
page
665
Problem
number
:
26
Date
solved
:
Tuesday, March 04, 2025 at 05:19:23 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 9*x__1(t)-2*x__2(t)+9*t, diff(x__2(t),t) = 5*x__1(t)-2*x__2(t)]; dsolve(ode);
ode={D[x1[t],t]==9*x1[t]-2*x2[t]+9*t,D[x2[t],t]==5*x1[t]-2*x2[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-9*t - 9*x__1(t) + 2*x__2(t) + Derivative(x__1(t), t),0),Eq(-5*x__1(t) + 2*x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)