Internal
problem
ID
[3918]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
9,
First
order
linear
systems.
Section
9.11
(Chapter
review),
page
665
Problem
number
:
28
Date
solved
:
Tuesday, March 04, 2025 at 05:19:25 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 2*x__1(t)-4*x__2(t)+3*x__3(t)+exp(6*t), diff(x__2(t),t) = -9*x__1(t)-3*x__2(t)-9*x__3(t)+1, diff(x__3(t),t) = 4*x__1(t)+4*x__2(t)+3*x__3(t)]; dsolve(ode);
ode={D[x1[t],t]==2*x1[t]-4*x2[t]+3*x3[t]+Exp[6*t],D[x2[t],t]==-9*x1[t]-3*x2[t]-9*x3[t]+1,D[x3[t],t]==4*x1[t]+4*x2[t]+3*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-2*x__1(t) + 4*x__2(t) - 3*x__3(t) - exp(6*t) + Derivative(x__1(t), t),0),Eq(9*x__1(t) + 3*x__2(t) + 9*x__3(t) + Derivative(x__2(t), t) - 1,0),Eq(-4*x__1(t) - 4*x__2(t) - 3*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)