Internal
problem
ID
[3929]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.4.
page
689
Problem
number
:
Problem
2
Date
solved
:
Tuesday, March 04, 2025 at 05:19:37 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)+y(t) = 8*exp(3*t); ic:=y(0) = 2; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],t]+y[t]==8*Exp[3*t]; ic={y[0]==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 8*exp(3*t) + Derivative(y(t), t),0) ics = {y(0): 2} dsolve(ode,func=y(t),ics=ics)