Internal
problem
ID
[3949]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.4.
page
689
Problem
number
:
Problem
22
Date
solved
:
Tuesday, March 04, 2025 at 05:19:55 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+5*diff(y(t),t)+4*y(t) = 20*sin(2*t); ic:=y(0) = -1, D(y)(0) = 2; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+5*D[y[t],t]+4*y[t]==20*Sin[2*t]; ic={y[0]==-1,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - 20*sin(2*t) + 5*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)