Internal
problem
ID
[3951]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.4.
page
689
Problem
number
:
Problem
24
Date
solved
:
Tuesday, March 04, 2025 at 05:19:57 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-3*diff(y(t),t)+2*y(t) = 3*cos(t)+sin(t); ic:=y(0) = 1, D(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-3*D[y[t],t]+2*y[t]==3*Cos[t]+Sin[t]; ic={y[0]==1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*y(t) - sin(t) - 3*cos(t) - 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)