Internal
problem
ID
[4337]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
31
Date
solved
:
Monday, January 27, 2025 at 09:06:02 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(y)]`]]
\begin{align*} y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime }&=0 \end{align*}
Time used: 0.007 (sec). Leaf size: 233
\begin{align*}
y \left (x \right ) &= \frac {\left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}-4 \ln \left (x \right )}{2 \left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= -\frac {i \left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{2}/{3}} \sqrt {3}+4 i \ln \left (x \right ) \sqrt {3}+\left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}-4 \ln \left (x \right )}{4 \left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
y \left (x \right ) &= \frac {i \left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{2}/{3}} \sqrt {3}+4 i \ln \left (x \right ) \sqrt {3}-\left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{2}/{3}}+4 \ln \left (x \right )}{4 \left (-12 c_{1} +4 \sqrt {4 \ln \left (x \right )^{3}+9 c_{1}^{2}}\right )^{{1}/{3}}} \\
\end{align*}
Time used: 1.208 (sec). Leaf size: 272
\begin{align*}
y(x)\to \frac {\sqrt [3]{\sqrt {4 \log ^3(x)+9 c_1{}^2}+3 c_1}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} \log (x)}{\sqrt [3]{\sqrt {4 \log ^3(x)+9 c_1{}^2}+3 c_1}} \\
y(x)\to \frac {\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) \log (x)+i 2^{2/3} \left (\sqrt {3}+i\right ) \left (\sqrt {4 \log ^3(x)+9 c_1{}^2}+3 c_1\right ){}^{2/3}}{4 \sqrt [3]{\sqrt {4 \log ^3(x)+9 c_1{}^2}+3 c_1}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) \log (x)}{2^{2/3} \sqrt [3]{\sqrt {4 \log ^3(x)+9 c_1{}^2}+3 c_1}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{\sqrt {4 \log ^3(x)+9 c_1{}^2}+3 c_1}}{2 \sqrt [3]{2}} \\
y(x)\to 0 \\
\end{align*}