Internal
problem
ID
[3962]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.7.
page
704
Problem
number
:
Problem
33
Date
solved
:
Tuesday, March 04, 2025 at 05:20:09 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)-3*y(t) = -10*exp(-t+a)*sin(-2*t+2*a)*Heaviside(t-a); ic:=y(0) = 5; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],t]-3*y[t]==10*Exp[-(t-a)]*Sin[2*(t-a)]*UnitStep[t-a]; ic={y[0]==5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") y = Function("y") ode = Eq(-3*y(t) + 10*exp(a - t)*sin(2*a - 2*t)*Heaviside(-a + t) + Derivative(y(t), t),0) ics = {y(0): 5} dsolve(ode,func=y(t),ics=ics)