28.1.49 problem 50

Internal problem ID [4355]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number : 50
Date solved : Monday, January 27, 2025 at 09:08:47 AM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 138

dsolve((y(x)*(y(x)^2+1))+( x*(y(x)^2-x+1))*diff(y(x),x)=0,y(x), singsol=all)
 
\[ -\frac {\left (\operatorname {arctanh}\left (\frac {\sqrt {\frac {x^{2} y \left (x \right )^{2}}{\left (x -1\right ) \left (y \left (x \right )^{2}-x +1\right )}}\, \left (x -1\right )}{\sqrt {\frac {x -1}{x -1-y \left (x \right )^{2}}}\, x}\right )-c_{1} \right ) \sqrt {\frac {x^{2} y \left (x \right )^{2}}{\left (x -1\right ) \left (y \left (x \right )^{2}-x +1\right )}}-\frac {\sqrt {\frac {2 x -2}{x -1-y \left (x \right )^{2}}}\, \sqrt {2}}{2}}{\sqrt {\frac {x^{2} y \left (x \right )^{2}}{\left (x -1\right ) \left (y \left (x \right )^{2}-x +1\right )}}} = 0 \]

Solution by Mathematica

Time used: 0.089 (sec). Leaf size: 34

DSolve[(y[x]*(y[x]^2+1))+( x*(y[x]^2-x+1))*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {1}{2} \left (-\arctan (y(x))-\frac {1}{y(x)}\right )+\frac {1}{2 x y(x)}=c_1,y(x)\right ] \]