Internal
problem
ID
[4358]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
53
Date
solved
:
Monday, January 27, 2025 at 09:08:54 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
\begin{align*} 2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime }&=0 \end{align*}
Time used: 1.453 (sec). Leaf size: 149
\[
y \left (x \right ) = \frac {-x^{{3}/{2}} \operatorname {RootOf}\left (-16+x^{7} c_{1} \textit {\_Z}^{12}-4 c_{1} x^{{11}/{2}} \textit {\_Z}^{10}+6 c_{1} x^{4} \textit {\_Z}^{8}+\left (128 x^{{9}/{2}}-4 c_{1} x^{{5}/{2}}\right ) \textit {\_Z}^{6}+\left (-192 x^{3}+c_{1} x \right ) \textit {\_Z}^{4}+96 x^{{3}/{2}} \textit {\_Z}^{2}\right )^{2}+1}{2 \operatorname {RootOf}\left (-16+x^{7} c_{1} \textit {\_Z}^{12}-4 c_{1} x^{{11}/{2}} \textit {\_Z}^{10}+6 c_{1} x^{4} \textit {\_Z}^{8}+\left (128 x^{{9}/{2}}-4 c_{1} x^{{5}/{2}}\right ) \textit {\_Z}^{6}+\left (-192 x^{3}+c_{1} x \right ) \textit {\_Z}^{4}+96 x^{{3}/{2}} \textit {\_Z}^{2}\right )^{2}}
\]
Time used: 60.168 (sec). Leaf size: 2023
\begin{align*}
y(x)\to -\frac {\sqrt {48 x^3+\frac {e^{4 c_1} x^2}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}+\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}+e^{2 c_1} \left (-x-\frac {96 x^4}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}\right )}}{8 \sqrt {3}} \\
y(x)\to \frac {\sqrt {48 x^3+\frac {e^{4 c_1} x^2}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}+\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}+e^{2 c_1} \left (-x-\frac {96 x^4}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}\right )}}{8 \sqrt {3}} \\
y(x)\to -\frac {\sqrt {\frac {i \left (\sqrt {3}+i\right ) e^{4 c_1} x^2+96 x^3 \sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}-2 e^{2 c_1} x \left (48 i \left (\sqrt {3}+i\right ) x^3+\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}\right )+\left (-1-i \sqrt {3}\right ) \left (-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}\right ){}^{2/3}}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}}}{8 \sqrt {6}} \\
y(x)\to \frac {\sqrt {\frac {i \left (\sqrt {3}+i\right ) e^{4 c_1} x^2+96 x^3 \sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}-2 e^{2 c_1} x \left (48 i \left (\sqrt {3}+i\right ) x^3+\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}\right )+\left (-1-i \sqrt {3}\right ) \left (-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}\right ){}^{2/3}}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}}}{8 \sqrt {6}} \\
y(x)\to -\frac {\sqrt {\frac {-i \left (\sqrt {3}-i\right ) e^{4 c_1} x^2+96 x^3 \sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}+i \left (\sqrt {3}+i\right ) \left (-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}\right ){}^{2/3}+e^{2 c_1} \left (96 \left (1+i \sqrt {3}\right ) x^4-2 x \sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}\right )}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}}}{8 \sqrt {6}} \\
y(x)\to \frac {\sqrt {\frac {-i \left (\sqrt {3}-i\right ) e^{4 c_1} x^2+96 x^3 \sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}+i \left (\sqrt {3}+i\right ) \left (-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}\right ){}^{2/3}+e^{2 c_1} \left (96 \left (1+i \sqrt {3}\right ) x^4-2 x \sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}\right )}{\sqrt [3]{-3456 e^{2 c_1} x^7+144 e^{4 c_1} x^5-e^{6 c_1} x^3+192 \sqrt {3} \sqrt {-e^{4 c_1} x^{12} \left (-108 x^2+e^{2 c_1}\right )}}}}}{8 \sqrt {6}} \\
\end{align*}