Internal
problem
ID
[4363]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
58
Date
solved
:
Monday, January 27, 2025 at 09:09:13 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
Time used: 0.008 (sec). Leaf size: 16
Time used: 0.108 (sec). Leaf size: 997
\begin{align*}
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}+\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}} \\
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}-\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}+\frac {6 c_1}{\sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}}}}-\frac {1}{2} \sqrt {\frac {\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}{\sqrt [3]{2}}-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2-\sqrt {256 x^3+81 c_1{}^4}}}} \\
\end{align*}