Internal
problem
ID
[4003]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.2.
page
739
Problem
number
:
Problem
19
Date
solved
:
Tuesday, March 04, 2025 at 05:22:30 PM
CAS
classification
:
[_Lienard]
Using series method with expansion around
With initial conditions
Order:=6; ode:=4*diff(diff(y(x),x),x)+x*diff(y(x),x)+4*y(x) = 0; ic:=y(0) = 1, D(y)(0) = 0; dsolve([ode,ic],y(x),type='series',x=0);
ode=4*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==0; ic={y[0]==1,Derivative[1][y][0] ==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + 4*y(x) + 4*Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)