Internal
problem
ID
[4008]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
11,
Series
Solutions
to
Linear
Differential
Equations.
Exercises
for
11.4.
page
758
Problem
number
:
4
Date
solved
:
Tuesday, March 04, 2025 at 05:22:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x-2)^2*diff(diff(y(x),x),x)+(x-2)*exp(x)*diff(y(x),x)+4*y(x)/x = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x-2)^2*D[y[x],{x,2}]+(x-2)*Exp[x]*D[y[x],x]+4/x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 2)**2*Derivative(y(x), (x, 2)) + (x - 2)*exp(x)*Derivative(y(x), x) + 4*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)