Internal
problem
ID
[4393]
Book
:
Differential
equations
for
engineers
by
Wei-Chau
XIE,
Cambridge
Press
2010
Section
:
Chapter
2.
First-Order
and
Simple
Higher-Order
Differential
Equations.
Page
78
Problem
number
:
90
Date
solved
:
Monday, January 27, 2025 at 09:12:04 AM
CAS
classification
:
[[_homogeneous, `class G`]]
\begin{align*} y \left (y-2 x y^{\prime }\right )^{3}&={y^{\prime }}^{2} \end{align*}
Time used: 0.102 (sec). Leaf size: 571
\begin{align*}
y \left (x \right ) &= -\frac {\sqrt {3}}{9 x} \\
y \left (x \right ) &= \frac {\sqrt {3}}{9 x} \\
y \left (x \right ) &= 0 \\
y \left (x \right ) &= \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+c_{1} +24 \left (\int _{}^{\textit {\_Z}}\frac {\left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}} \textit {\_a}}{36 \left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}} \textit {\_a}^{2}+\left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{2}/{3}}-24 \textit {\_a}^{2}-\left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}}+1}d \textit {\_a} \right )\right )}{x} \\
y \left (x \right ) &= \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+c_{1} -48 \left (\int _{}^{\textit {\_Z}}\frac {\left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}} \textit {\_a}}{i \left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{2}/{3}} \sqrt {3}+24 i \sqrt {3}\, \textit {\_a}^{2}-72 \left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}} \textit {\_a}^{2}-i \sqrt {3}+\left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{2}/{3}}-24 \textit {\_a}^{2}+2 \left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}}+1}d \textit {\_a} \right )\right )}{x} \\
y \left (x \right ) &= \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+c_{1} +48 \left (\int _{}^{\textit {\_Z}}\frac {\left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}} \textit {\_a}}{i \left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{2}/{3}} \sqrt {3}+24 i \sqrt {3}\, \textit {\_a}^{2}+72 \left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}} \textit {\_a}^{2}-i \sqrt {3}-\left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{2}/{3}}+24 \textit {\_a}^{2}-2 \left (24 \textit {\_a}^{3} \sqrt {81 \textit {\_a}^{2}-3}-216 \textit {\_a}^{4}+36 \textit {\_a}^{2}-1\right )^{{1}/{3}}-1}d \textit {\_a} \right )\right )}{x} \\
\end{align*}
Time used: 0.000 (sec). Leaf size: 0
Timed out