Internal
problem
ID
[4110]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
2.
First
order
equations.
Exercises
at
page
14
Problem
number
:
2(j)
Date
solved
:
Tuesday, March 04, 2025 at 05:26:22 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=2*sin(3*x)*sin(2*y(x))*diff(y(x),x)-3*cos(3*x)*cos(2*y(x)) = 0; ic:=y(1/12*Pi) = 1/8*Pi; dsolve([ode,ic],y(x), singsol=all);
ode=2*Sin[3*x]*Sin[2*y[x]]*D[y[x],x]-3*Cos[3*x]*Cos[2*y[x]]==0; ic=y[Pi/12]==Pi/8; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*sin(3*x)*sin(2*y(x))*Derivative(y(x), x) - 3*cos(3*x)*cos(2*y(x)),0) ics = {y(pi/12): pi/8} dsolve(ode,func=y(x),ics=ics)