23.2.17 problem 6(f)

Internal problem ID [4134]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 3. Linear differential equations of second order. Exercises at page 31
Problem number : 6(f)
Date solved : Tuesday, March 04, 2025 at 05:51:55 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)+2*y(x) = exp(x)+2; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = c_{2} \sin \left (\sqrt {2}\, x \right )+\cos \left (\sqrt {2}\, x \right ) c_{1} +1+\frac {{\mathrm e}^{x}}{3} \]
Mathematica. Time used: 0.202 (sec). Leaf size: 36
ode=D[y[x],{x,2}]+2*y[x]==Exp[x]+2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^x}{3}+c_1 \cos \left (\sqrt {2} x\right )+c_2 \sin \left (\sqrt {2} x\right )+1 \]
Sympy. Time used: 0.072 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - exp(x) + Derivative(y(x), (x, 2)) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\sqrt {2} x \right )} + C_{2} \cos {\left (\sqrt {2} x \right )} + \frac {e^{x}}{3} + 1 \]