Internal
problem
ID
[4140]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
3.
Linear
differential
equations
of
second
order.
Exercises
at
page
31
Problem
number
:
8
Date
solved
:
Tuesday, March 04, 2025 at 05:53:26 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = x^2+2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==x^2+2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x**2 - 2*x*Derivative(y(x), x) + 2*y(x) - 2,0) ics = {} dsolve(ode,func=y(x),ics=ics)