23.3.2 problem 7(b)

Internal problem ID [4143]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 4. The general linear differential equation of order n. Exercises at page 63
Problem number : 7(b)
Date solved : Tuesday, March 04, 2025 at 05:53:32 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-12 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 151
ode:=diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-12*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = c_{1} {\mathrm e}^{\frac {\left (\left (163+18 \sqrt {82}\right )^{{2}/{3}}+\left (163+18 \sqrt {82}\right )^{{1}/{3}}+1\right ) x}{3 \left (163+18 \sqrt {82}\right )^{{1}/{3}}}}-c_{2} {\mathrm e}^{-\frac {\left (\left (163+18 \sqrt {82}\right )^{{1}/{3}}-1\right )^{2} x}{6 \left (163+18 \sqrt {82}\right )^{{1}/{3}}}} \sin \left (\frac {\sqrt {3}\, \left (\left (163+18 \sqrt {82}\right )^{{2}/{3}}-1\right ) x}{6 \left (163+18 \sqrt {82}\right )^{{1}/{3}}}\right )+c_3 \,{\mathrm e}^{-\frac {\left (\left (163+18 \sqrt {82}\right )^{{1}/{3}}-1\right )^{2} x}{6 \left (163+18 \sqrt {82}\right )^{{1}/{3}}}} \cos \left (\frac {\sqrt {3}\, \left (\left (163+18 \sqrt {82}\right )^{{2}/{3}}-1\right ) x}{6 \left (163+18 \sqrt {82}\right )^{{1}/{3}}}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 75
ode=D[y[x],{x,3}]-D[y[x],{x,2}]-12*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}^2-12\&,2\right ]\right )+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}^2-12\&,3\right ]\right )+c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}^2-12\&,1\right ]\right ) \]
Sympy. Time used: 0.333 (sec). Leaf size: 175
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-12*y(x) - Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (- \sqrt [3]{18 \sqrt {82} + 163} - \frac {1}{\sqrt [3]{18 \sqrt {82} + 163}} + 2\right )}{6}} \sin {\left (\frac {\sqrt {3} x \left (- \sqrt [3]{18 \sqrt {82} + 163} + \frac {1}{\sqrt [3]{18 \sqrt {82} + 163}}\right )}{6} \right )} + C_{2} e^{\frac {x \left (- \sqrt [3]{18 \sqrt {82} + 163} - \frac {1}{\sqrt [3]{18 \sqrt {82} + 163}} + 2\right )}{6}} \cos {\left (\frac {\sqrt {3} x \left (- \sqrt [3]{18 \sqrt {82} + 163} + \frac {1}{\sqrt [3]{18 \sqrt {82} + 163}}\right )}{6} \right )} + C_{3} e^{\frac {x \left (\frac {1}{\sqrt [3]{18 \sqrt {82} + 163}} + 1 + \sqrt [3]{18 \sqrt {82} + 163}\right )}{3}} \]