23.3.7 problem 7(g)

Internal problem ID [4148]
Book : Theory and solutions of Ordinary Differential equations, Donald Greenspan, 1960
Section : Chapter 4. The general linear differential equation of order n. Exercises at page 63
Problem number : 7(g)
Date solved : Tuesday, March 04, 2025 at 05:53:35 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 29
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+5*diff(diff(y(x),x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = 2 c_{2} \cos \left (x \right )^{2}+\left (2 c_{1} \sin \left (x \right )+c_4 \right ) \cos \left (x \right )+c_3 \sin \left (x \right )-c_{2} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode=D[y[x],{x,4}]+5*D[y[x],{x,2}]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (2 x)+c_4 \sin (x)+\cos (x) (2 c_2 \sin (x)+c_3) \]
Sympy. Time used: 0.070 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + 5*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \sin {\left (2 x \right )} + C_{3} \cos {\left (x \right )} + C_{4} \cos {\left (2 x \right )} \]