Internal
problem
ID
[4148]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
7(g)
Date
solved
:
Tuesday, March 04, 2025 at 05:53:35 PM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+5*diff(diff(y(x),x),x)+4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+5*D[y[x],{x,2}]+4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + 5*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)