Internal
problem
ID
[4160]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
8(i)
Date
solved
:
Tuesday, March 04, 2025 at 05:54:34 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+10*diff(diff(y(x),x),x)+9*y(x) = cos(2*x+3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+10*D[y[x],{x,2}]+9*y[x]==Cos[2*x+3]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) - cos(2*x + 3) + 10*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)