Internal
problem
ID
[4163]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
4.
The
general
linear
differential
equation
of
order
n.
Exercises
at
page
63
Problem
number
:
9(c)
Date
solved
:
Tuesday, March 04, 2025 at 05:54:40 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=25*diff(diff(y(x),x),x)-30*diff(y(x),x)+9*y(x) = 0; ic:=y(1) = 0, D(y)(1) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=25*D[y[x],{x,2}]-30*D[y[x],x]+9*y[x]==0; ic={y[1]==0,Derivative[1][y][1] ==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*y(x) - 30*Derivative(y(x), x) + 25*Derivative(y(x), (x, 2)),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 2} dsolve(ode,func=y(x),ics=ics)