Internal
problem
ID
[4174]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
6.
Linear
systems.
Exercises
at
page
110
Problem
number
:
10
Date
solved
:
Tuesday, March 04, 2025 at 05:54:54 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(x),x) = -2*y__2(x), diff(y__2(x),x) = y__1(x)+2*y__2(x)]; ic:=y__1(0) = -1y__2(0) = 1; dsolve([ode,ic]);
ode={D[y1[x],x]==-2*y2[x],D[y2[x],x]==y1[x]+2*y2[x]}; ic={y1[0]==-1,y2[0]==1}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(2*y__2(x) + Derivative(y__1(x), x),0),Eq(-y__1(x) - 2*y__2(x) + Derivative(y__2(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)