Internal
problem
ID
[4176]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
6.
Linear
systems.
Exercises
at
page
110
Problem
number
:
11(b)
Date
solved
:
Tuesday, March 04, 2025 at 05:54:56 PM
CAS
classification
:
system_of_ODEs
ode:=[2*diff(y__1(x),x)+diff(y__2(x),x)-4*y__1(x)-y__2(x) = exp(x), diff(y__1(x),x)+3*y__1(x)+y__2(x) = 0]; dsolve(ode);
ode={2*D[y1[x],x]+D[y2[x],x]-4*y1[x]-y2[x]==Exp[x],D[y1[x],x]+3*y1[x]+y2[x]==0}; ic={}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(-4*y__1(x) - y__2(x) - exp(x) + 2*Derivative(y__1(x), x) + Derivative(y__2(x), x),0),Eq(3*y__1(x) + y__2(x) + Derivative(y__1(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)