28.4.35 problem 7.35

Internal problem ID [4567]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 7. Systems of linear differential equations. Problems at page 351
Problem number : 7.35
Date solved : Monday, January 27, 2025 at 09:23:35 AM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=2 x_{1} \left (t \right )+x_{2} \left (t \right )\\ x_{2}^{\prime }\left (t \right )&=x_{1} \left (t \right )+3 x_{2} \left (t \right )-x_{3} \left (t \right )\\ x_{3}^{\prime }\left (t \right )&=-x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.060 (sec). Leaf size: 98

dsolve([diff(x__1(t),t)=2*x__1(t)+x__2(t),diff(x__2(t),t)=x__1(t)+3*x__2(t)-x__3(t),diff(x__3(t),t)=-x__1(t)+2*x__2(t)+3*x__3(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{2 t} c_{1} +c_{2} {\mathrm e}^{3 t} \sin \left (t \right )+c_3 \,{\mathrm e}^{3 t} \cos \left (t \right ) \\ x_{2} \left (t \right ) &= {\mathrm e}^{3 t} \left (c_{2} \cos \left (t \right )+\cos \left (t \right ) c_3 +\sin \left (t \right ) c_{2} -c_3 \sin \left (t \right )\right ) \\ x_{3} \left (t \right ) &= {\mathrm e}^{2 t} c_{1} +2 c_{2} {\mathrm e}^{3 t} \sin \left (t \right )-c_{2} {\mathrm e}^{3 t} \cos \left (t \right )+2 c_3 \,{\mathrm e}^{3 t} \cos \left (t \right )+c_3 \,{\mathrm e}^{3 t} \sin \left (t \right ) \\ \end{align*}

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 139

DSolve[{D[x1[t],t]==2*x1[t]+x2[t],D[x2[t],t]==x1[t]+3*x2[t]-x3[t],D[x3[t],t]==-x1[t]+2*x2[t]+3*x3[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to -\frac {1}{2} e^{2 t} \left ((c_1-c_2-c_3) e^t \cos (t)-(c_1+c_2-c_3) e^t \sin (t)-3 c_1+c_2+c_3\right ) \\ \text {x2}(t)\to e^{3 t} (c_2 \cos (t)+(c_1-c_3) \sin (t)) \\ \text {x3}(t)\to -\frac {1}{2} e^{2 t} \left ((3 c_1-c_2-3 c_3) e^t \cos (t)-(c_1+3 c_2-c_3) e^t \sin (t)-3 c_1+c_2+c_3\right ) \\ \end{align*}