Internal
problem
ID
[4189]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
7.
Special
functions.
Exercises
at
page
124
Problem
number
:
3(k)
Date
solved
:
Tuesday, March 04, 2025 at 05:55:12 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)+(x-1)/x/(1+x)*diff(y(x),x)-1/x/(1+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]+(x-1)/(x*(x+1))*D[y[x],x]-1/(x*(x+1))*y[x] ==0; ic={}; AsymptoticDSolveValue[{ode,ic},{y[x]},{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (x - 1)*Derivative(y(x), x)/(x*(x + 1)) - y(x)/(x*(x + 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)