24.1.18 problem 4(c)

Internal problem ID [4207]
Book : Elementary Differential equations, Chaundy, 1969
Section : Exercises 3, page 60
Problem number : 4(c)
Date solved : Tuesday, March 04, 2025 at 05:55:58 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+y \sin \left (x \right )&=\sin \left (2 x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=diff(y(x),x)+y(x)*sin(x) = sin(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = 2 \cos \left (x \right )+2+{\mathrm e}^{\cos \left (x \right )} c_{1} \]
Mathematica. Time used: 0.067 (sec). Leaf size: 18
ode=D[y[x],x]+y[x]*Sin[x]==Sin[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 2 \cos (x)+c_1 e^{\cos (x)}+2 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*sin(x) - sin(2*x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out