28.5.4 problem 9.4

Internal problem ID [4591]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 9. Series Solutions of Differential Equations. Problems at page 426
Problem number : 9.4
Date solved : Monday, January 27, 2025 at 09:25:49 AM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.011 (sec). Leaf size: 39

Order:=6; 
dsolve((1-x^2)*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = \left (1-\frac {1}{2} x^{2}-\frac {1}{24} x^{4}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}-\frac {1}{24} x^{5}\right ) D\left (y \right )\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 42

AsymptoticDSolveValue[(1-x^2)*D[y[x],{x,2}]+y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (-\frac {x^5}{24}-\frac {x^3}{6}+x\right )+c_1 \left (-\frac {x^4}{24}-\frac {x^2}{2}+1\right ) \]