28.5.13 problem 9.13

Internal problem ID [4600]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 9. Series Solutions of Differential Equations. Problems at page 426
Problem number : 9.13
Date solved : Monday, January 27, 2025 at 09:25:58 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 60

Order:=6; 
dsolve(x^2*diff(y(x),x$2)-(2*x+x^2)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = x \left (c_{1} x \left (1+x +\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {1}{24} x^{4}+\frac {1}{120} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (\ln \left (x \right ) \left (x +x^{2}+\frac {1}{2} x^{3}+\frac {1}{6} x^{4}+\frac {1}{24} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (1+x -\frac {1}{4} x^{3}-\frac {5}{36} x^{4}-\frac {13}{288} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right )\right ) \]

Solution by Mathematica

Time used: 0.020 (sec). Leaf size: 83

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-(2*x+x^2)*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {1}{6} x^2 \left (x^3+3 x^2+6 x+6\right ) \log (x)-\frac {1}{36} x \left (11 x^4+27 x^3+36 x^2-36\right )\right )+c_2 \left (\frac {x^6}{24}+\frac {x^5}{6}+\frac {x^4}{2}+x^3+x^2\right ) \]