28.5.19 problem 9.19

Internal problem ID [4606]
Book : Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section : Chapter 9. Series Solutions of Differential Equations. Problems at page 426
Problem number : 9.19
Date solved : Monday, January 27, 2025 at 09:26:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+2 \left (x -1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.020 (sec). Leaf size: 47

Order:=6; 
dsolve(x^2*diff(y(x),x$2)-x^2*diff(y(x),x)+2*(x-1)*y(x)=0,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} x^{2} \left (1+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_{2} \left (\ln \left (x \right ) \left (\left (-6\right ) x^{3}+\operatorname {O}\left (x^{6}\right )\right )+\left (12+18 x +18 x^{2}+11 x^{3}-\frac {3}{2} x^{4}-\frac {3}{20} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.030 (sec). Leaf size: 50

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-x^2*D[y[x],x]+2*(x-1)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 x^2+c_1 \left (-\frac {1}{2} x^2 \log (x)-\frac {3 x^4-26 x^3-36 x^2-36 x-24}{24 x}\right ) \]