Internal
problem
ID
[4226]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
14
Date
solved
:
Tuesday, March 04, 2025 at 05:56:50 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = x*exp(-2*y(x)); ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==x*Exp[-2*y[x]]; ic=y[0]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*exp(-2*y(x)) + Derivative(y(x), x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)