25.1.20 problem 20

Internal problem ID [4232]
Book : Advanced Mathematica, Book2, Perkin and Perkin, 1992
Section : Chapter 11.3, page 316
Problem number : 20
Date solved : Tuesday, March 04, 2025 at 05:57:07 PM
CAS classification : [_separable]

\begin{align*} 2 x y^{\prime }&=1-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 13
ode:=2*x*diff(y(x),x) = 1-y(x)^2; 
ic:=y(1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {x -1}{x +1} \]
Mathematica. Time used: 0.658 (sec). Leaf size: 14
ode=2*x*D[y[x],x]==1-y[x]^2; 
ic=y[1]==0; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {x-1}{x+1} \]
Sympy. Time used: 0.306 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + y(x)**2 - 1,0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x - 1}{x + 1} \]