Internal
problem
ID
[4237]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
25
Date
solved
:
Tuesday, March 04, 2025 at 05:57:20 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=exp(2*x)*y(x)*diff(y(x),x)+2*x = 0; ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=Exp[2*x]*y[x]*D[y[x],x]+2*x==0; ic=y[0]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + y(x)*exp(2*x)*Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)