Internal
problem
ID
[4240]
Book
:
Advanced
Mathematica,
Book2,
Perkin
and
Perkin,
1992
Section
:
Chapter
11.3,
page
316
Problem
number
:
28
Date
solved
:
Tuesday, March 04, 2025 at 05:57:32 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x*y(x)*diff(y(x),x) = 2*x^2-y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x*y[x]*D[y[x],x]==2*x^2-y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2 + x*y(x)*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)