29.2.28 problem 53

Internal problem ID [4661]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 2
Problem number : 53
Date solved : Monday, January 27, 2025 at 09:30:38 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=3 a +3 b x +3 b y^{2} \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 80

dsolve(diff(y(x),x) = 3*a+3*b*x+3*b*y(x)^2,y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {\left (\operatorname {AiryAi}\left (1, -\frac {3^{{2}/{3}} \left (b x +a \right )}{b^{{1}/{3}}}\right ) c_{1} +\operatorname {AiryBi}\left (1, -\frac {3^{{2}/{3}} \left (b x +a \right )}{b^{{1}/{3}}}\right )\right ) 3^{{2}/{3}}}{b^{{1}/{3}} \left (3 c_{1} \operatorname {AiryAi}\left (-\frac {3^{{2}/{3}} \left (b x +a \right )}{b^{{1}/{3}}}\right )+3 \operatorname {AiryBi}\left (-\frac {3^{{2}/{3}} \left (b x +a \right )}{b^{{1}/{3}}}\right )\right )} \]

Solution by Mathematica

Time used: 0.216 (sec). Leaf size: 191

DSolve[D[y[x],x]==3*(a+b*x+ b*y[x]^2),y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {b \left (\operatorname {AiryBiPrime}\left (-\frac {3^{2/3} b (a+b x)}{\left (-b^2\right )^{2/3}}\right )+c_1 \operatorname {AiryAiPrime}\left (-\frac {3^{2/3} b (a+b x)}{\left (-b^2\right )^{2/3}}\right )\right )}{\sqrt [3]{3} \left (-b^2\right )^{2/3} \left (\operatorname {AiryBi}\left (-\frac {3^{2/3} b (a+b x)}{\left (-b^2\right )^{2/3}}\right )+c_1 \operatorname {AiryAi}\left (-\frac {3^{2/3} b (a+b x)}{\left (-b^2\right )^{2/3}}\right )\right )} \\ y(x)\to \frac {b \operatorname {AiryAiPrime}\left (-\frac {3^{2/3} b (a+b x)}{\left (-b^2\right )^{2/3}}\right )}{\sqrt [3]{3} \left (-b^2\right )^{2/3} \operatorname {AiryAi}\left (-\frac {3^{2/3} b (a+b x)}{\left (-b^2\right )^{2/3}}\right )} \\ \end{align*}