29.3.7 problem 61

Internal problem ID [4669]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 3
Problem number : 61
Date solved : Monday, January 27, 2025 at 09:30:52 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=1+a \left (x -y\right ) y \end{align*}

Solution by Maple

Time used: 0.062 (sec). Leaf size: 73

dsolve(diff(y(x),x) = 1+a*(x-y(x))*y(x),y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {\sqrt {2}\, \sqrt {\pi }\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right ) a x +2 a^{{3}/{2}} c_{1} x +2 \sqrt {a}\, {\mathrm e}^{-\frac {a \,x^{2}}{2}}}{a \left (\sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right )+2 c_{1} \sqrt {a}\right )} \]

Solution by Mathematica

Time used: 0.567 (sec). Leaf size: 134

DSolve[D[y[x],x]==1+a*(x-y[x])*y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {\sqrt {2 \pi } c_1 x \text {erf}\left (\frac {\sqrt {a} x}{\sqrt {2}}\right )+\frac {2 \left (a x+c_1 e^{-\frac {a x^2}{2}}\right )}{\sqrt {a}}}{2 \sqrt {a}+\sqrt {2 \pi } c_1 \text {erf}\left (\frac {\sqrt {a} x}{\sqrt {2}}\right )} \\ y(x)\to \frac {\sqrt {\frac {2}{\pi }} e^{-\frac {a x^2}{2}}}{\sqrt {a} \text {erf}\left (\frac {\sqrt {a} x}{\sqrt {2}}\right )}+x \\ \end{align*}