5.21.6 Problems 501 to 513

Table 5.995: Higher order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

19167

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

19168

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

19169

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

19170

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

19171

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

19172

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

19208

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

19409

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

19410

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19423

\[ {}a y^{\prime \prime \prime } = y^{\prime \prime } \]

19530

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

19531

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

19611

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]